29 research outputs found

    Effects of cable geometry and aircraft attitude on the accuracy of a magnetic leader cable system for aircraft guidance during rollout and turnoff

    Get PDF
    A theoretical analysis of a single wire magnetic leader cable system for aircraft rollout and turnoff guidance was performed to determine the errors produced by the leader cable installation geometry and aircraft attitude. It was found that errors in the measurement of lateral displacement from the cable are smaller than errors in the measurement of aircraft heading and that both errors are smallest at or near the cable

    A preliminary evaluation of a failure detection filter for detecting and identifying control element failures in a transport aircraft

    Get PDF
    The application of the failure detection filter to the detection and identification of aircraft control element failures was evaluated in a linear digital simulation of the longitudinal dynamics of a B-737 Aircraft. Simulation results show that with a simple correlator and threshold detector used to process the filter residuals, the failure detection performance is seriously degraded by the effects of turbulence

    A preliminary evaluation of the generalized likelihood ratio for detecting and identifying control element failures in a transport aircraft

    Get PDF
    The application of the Generalized Likelihood Ratio technique to the detection and identification of aircraft control element failures has been evaluated in a linear digital simulation of the longitudinal dynamics of a B-737 aircraft. Simulation results show that the technique has potential but that the effects of wind turbulence and Kalman filter model errors are problems which must be overcome

    Parametric analysis of an imaging radar for use as an imaging radar for use as an independent landing monitor

    Get PDF
    The capabilities are analyzed of a real aperture, forward-looking imaging radar for use as an independent landing monitor, which will provide the pilot with an independent means of assessing the progress of an automatic landing during Category 3 operations. The analysis shows that adequate ground resolution and signal-to-noise ratio can be obtained to image a runway with grassy surroundings using a radar operating at 35 GHz in good weather and in most fog but that performance is severely degraded in moderate to heavy rain and wet snow. Weather effects on a 10 GHz imager are not serious, with the possible exception of very heavy rain, but the azimuthal resolution at 10 GHz is inadequate with antennas up to 2 m long

    Results from tests, with van-mounted sensor, of magnetic leader cable for aircraft guidance during roll-out and turnoff

    Get PDF
    Tests were conducted with a van mounted experimental magnetic leader cable sensor to evaluate its potential for measuring aircraft displacement and heading with respect to the leader cable during roll out and turnoff. Test results show that the system may be usable in measuring displacement but the heading measurement contains errors introduced by distortion of the magnetic field by the metal van or aircraft

    Guidance and control system research for improved terminal area operations

    Get PDF
    Several guidance and control system research and development activities aimed at improving the operational capabilities of commercial aircraft in the terminal area are described. The guidance and control systems were designed to improve the capacity and efficiency of terminal area operations, enhance the approach and landing capability of aircraft in adverse weather conditions, and reduce the impact of aircraft noise perceived on the ground. Specific performance features include the ability to capture and track steep glideslopes, use short final approaches, perform flares with reduced longitudinal touchdown dispersion and execute high speed runway rollout and turnoff. Results obtained from simulation studies or flight tests are shown for each of the algorithms

    Restructurable Controls

    Get PDF
    Restructurable control system theory, robust reconfiguration for high reliability and survivability for advanced aircraft, restructurable controls problem definition and research, experimentation, system identification methods applied to aircraft, a self-repairing digital flight control system, and state-of-the-art theory application are addressed

    Involvement of the Intrinsic/Default System in Movement-Related Self Recognition

    Get PDF
    The question of how people recognize themselves and separate themselves from the environment and others has long intrigued philosophers and scientists. Recent findings have linked regions of the ‘default brain’ or ‘intrinsic system’ to self-related processing. We used a paradigm in which subjects had to rely on subtle sensory-motor synchronization differences to determine whether a viewed movement belonged to them or to another person, while stimuli and task demands associated with the “responded self” and “responded other” conditions were precisely matched. Self recognition was associated with enhanced brain activity in several ROIs of the intrinsic system, whereas no differences emerged within the extrinsic system. This self-related effect was found even in cases where the sensory-motor aspects were precisely matched. Control conditions ruled out task difficulty as the source of the differential self-related effects. The findings shed light on the neural systems underlying bodily self recognition

    Neural-network-based scheme for sensor failure detection, identification, and accommodation

    No full text
    corecore